the radial stress,
\]
circumferential (hoop) stress,
\[ \sigma_{t}^{'}=\frac{1}{2}\left(\sigma_{H}^{'}+\sigma_{h}^{'}\right)\left(1+\frac{r_{w}^{2}}{r^{2}}\right)-\frac{1}{2}\left(\sigma_{H}^{'}-\sigma_{h}^{'}\right)\left(1+\frac{3r_{w}^{4}}{r^{4}}\right)\cos2\theta-\frac{r_{w}^{2}}{r^{2}}\left(p_{w}-p_{r}\right)
\]
tangential shear stress,
\[ \tau_{r\phi}=\frac{1}{2}\left(\sigma_{H}^{'}-\sigma_{h}^{'}\right)\left(1+\frac{2r_{w}^{2}}{r^{2}}-\frac{3r_{w}^{4}}{r^{4}}\right)
\]
Hoop stress analysis can be used to determine wellbore failures, breakouts and fracture.
Theses stress changes as the location moves away from wellbore.
- Kirsch, G., Die Theorie der Elastizitat und die Beaurforisse der Festigkeitslehre, VDI Z 1857 1968, 42, 707, 1898.
- Jaeger, J. C., Elasticity, Fracture and Flow, 212 pp., Methuen, London, 1961.
- Zoback, M. D., D. Moos, L. Mastin, and R. N. Anderson (1985), Well bore breakouts and in situ stress, J. Geophys. Res., 90(B7), 5523–5530, doi:10.1029/JB090iB07p05523.